An Intensive Analysis of Lockheeds' Fusion Research
An Intensive Analysis of Lockheed-Martins’ Fusion Effort
This article was written over a few weeks in November and December of 2016. As always, the best way to read this is on PDF – so I encourage you to download this off GitHub. The article is not perfect, but nothing ever is. Hopefully, it helps scientists, advocates, students and policy makers understand the newest and greatest insights into fusion research. Enjoy.
Introduction:
Much has been made about Lockheed Martins’ announcement that
the company was developing a Compact Fusion Reactor. Unfortunately, they have been extremely lax
on details. Many people - myself
included - have called for a peer reviewed publication [12]. This is how science is done. It is non-negotiable. Lockheed still has not published. What we know about this effort, to date,
comes from 3 patents [4, 5, 7], a presentation at Princeton [8], some off-hand
comments by managers [9] and a dreamy YouTube video [6]. The dreamy YouTube video is particularly
disappointing. It lacks any details or
technical rigor. Hence, it was
surprising this past October, when the company presented a poster at the 2016
American Physics Society conference.
Details finally came out. With this
poster, I have written the following analysis.
This is a real treat for the community of fusion supporters out
there. It is a rare chance to look at
some really bleeding edge research.
"Don't worry about people
stealing an idea. If it's original, you will have to ram it down their
throats." - Howard Aiken
Secrecy Is Dangerous:
Secrecy in fusion is dangerous for many reasons. First, the public sees fusion power as
impossible. The fusion community faces
this problem every day. At some level,
people will just not believe in fusion, until they can touch a power
plant. So, it is in the fusion
community’s best interest to be as open as they possibly can be. Second, with no details, no one can follow in
Lockheeds’ footsteps. Science is a
collaborative effort. You need multiple
teams looking at any given research, from multiple directions. You need critics. You need debate. Lockheed foolishly thinks that it is
protecting vital work. In fact – most of
the fusion community is not interested; most of the fusion community is solely focused
on the tokamak. The third danger arises from
fusions’ long history with wild claims. This
means that Lockheeds’ announcement can be dismissed as just around wild fusion
claim. We know that story. We have heard it before: MIGMA in the 1970’s,
Cold Fusion in the 1990’s and Bubble Fusion in the 2000’s [10, 11]. People make a lot of noise - but give no data
– and over time the science falters. All
fusion teams should be aware of this. To avoid the dust bin of history – you
must publish in a peer-reviewed journal.
Lockheed needs to publish.
ITER Is
Hurting Us:
The Lockheed effort is happening at a time of great problems inside the fusion community. For many years, US fusion funding has been heavily focused on just one machine: ITER. This single project is eating the larger budget of the Office of Fusion Energy Sciences. Because of ITERs’ thirst for cash, many other concepts have been strangled or shut down. Often, researchers need to “show relevance” to ITER, otherwise they will run the risk of getting closed down. After years of this kind of single minded support, many good ideas are languishing. For example, the University of Washington has invented a new fusion concept called the dynomak. The team is seeking 30 million over five years [13]. Their idea has a lot of promise. But the Office of Fusion Energy Sciences cannot and will not help them. The agency only cares about ITER. So the team, is turning to ARPA-E and private investment for support [14]. In another example, the company EMC2, has published promising results on the polywell [15]. To take the concept further they need 30 million in investment, but again – the Office of Fusion Energy Sciences is not helping [16]. So many projects are hurting. In October, MIT had to shut down the Alacator tokamak due to a lack of funding [17]. Also, the Levitating Dipole Experiment needs a few million over several years and the Plasma Liner Experiment at Los Alamos is surviving on limited ARPA-E funding [18, 19]. All this funding is being redistributed to ITER - and there is a strong argument that ITER will never lead to a commercial fusion power plant [20]. As an American, this hurts my pride. The US has led the way in fusion research and we need to stay in front it. This technology has vast implications for our military, economic and cultural dominance. If the US want to change, it should try to use government money to lure dollars from private sector. A public-private partnerships is a good path forward.
Progress
Despite ITER:
Lockheeds’
Effort:
Where does Lockheeds’ effort fit in this ecosystem? I would argue that Lockheeds’ effort is one
the most innovative fusion efforts, but that means it has the highest inherent
risk. The secret to Lockheed’s’ work is
the way they trap the plasma. This is their
secret sauce. Their idea is radical: use
a plasma’s own internal diamagnetism to reject the outside field. Plasma is a soup of (+) and (-) charges. It moves.
As the charges move, they makes a magnetic field [24]. So – plasma has its own internal magnetic
properties. This is technically known as
its’ diamagnetism [23]. Lockheeds’ idea to use this internal magnetic
property to push against the sharply bent containing field. Dr. Bussard called the concept “the whiffle
ball trap” [49]. If Lockheed can do
this, they could create the worlds’ best plasma trap.
Making the worlds’ best plasma trap, gets you
pretty far down the road to a fusion reactor.
Efficient trapping is a huge problem in fusion research. This type of trap would have three key
traits. First, the idea aims to hold a
high pressure plasma inside it [25].
This is known as a “beta = 1” plasma – where the plasma pressure matches
with the outside magnetic field pressure [26].
That helps the overall fusion rate by raising the density. Second, the outside field is blocked
from entering the inner plasma. This is awesome. That reduces the energy leaking from the
plasma as light. Technically, it lowers the
cyclotron and synchrotron losses [25, 27, 28].
Third, the surface of this plasma trap would basically have a thin skin
with holes in it. The holes would be at
the cusp. These are spots where the
field is sharply bent; and can be considered places where plasma leaks out. We want to design the trap with cusps as
small, and as few, as possible. Along
this surface or skin the trap, material would be much better trapped. The surface may also have electrons streaming
on it; models by Lockheed and others have talked about a surface current [29,
30, 31]. In a perfect world, mass would
be trapped inside this surface with losses only happening through the cusps [25].
That would be awesome. It would lower
conduction losses – a major problem across all of fusion research – and make
the machine yet more efficient. What
would such a volume look like? For the
polywell, many people have proposed different shapes; including: spheres and
multi-pointed stars shapes [32 -34]. These
are shown below for the 2014 Navy machine.
At this point, it would be guesswork as to what the shape would be.
"Wherever I see
people doing something the way it's always been done ... well, that's just a
big red flag to me to go look somewhere else." - Mark Cuban
Lockheed Is
Positioned To Surpass EMC2:
Lockheed is positioned to show cusp confinement better than EMC2 was able to. So far, EMC2 is the only group that has published data on cusp confinement. This has been presented at a slew of professional talks [39 - 44] and in a published paper from 2014 [35]. The company used x-rays to prove electrons were trapped for tens of microseconds longer than they should have been. They also used flux loops to measure a plasma-generated magnetic field. The team estimated a trapped plasma volume of ~5,000 cubic centimeters. This is not much data. This lack of interest frustrates me. We need multiple universities and companies looking at this – its implications are huge. This is also why Lockheeds’ effort is so exciting. Lockheed is positioned with the team, the tools and the funding to press forward - where EMC2 could not.
The T4B
Experiment:
Results:
The Rest of
This Post:
The rest of this poster is all modelling. Lockheed created three models. The first uses some math and software to
understand this plasma trap. The second
model is a particle-based simulation of plasma inside the machine. The last model is a gritty, hands-on, math
model of different physical processes.
They use these tools to explore chunks of the machine, the T4B and their
ultimate goal: the CFR power plant concept.
So, to be clear, there is no data in the rest of this post. It is still worth reading, if you want a deep
sense of what is going on in this research.
Reprinted
– The Poster Abstract:
The Lockheed Martin Compact Fusion Reactor concept relies on a diamagnetic plasma behavior to produce sharp magnetic field boundaries and confine fusion plasma in a magnetically encapsulated, linear ring cusp geometry. Simulations show stable inflation to the high beta, sharp boundary state with constant thickness sheaths. Zero dimensional confinement models predict effectiveness of neutral beam heating to produce high electron temperatures in the T4B experiment. Those same models are used to determine the feasibility of an operation reactor and determine the required magnetic shielding performance for design closure. The T4B experiment will characterize and test plasma sources in the Compact Fusion Reactor geometry and conduct initial neutral beam heating experiments. The T4B design and diagnostics suite are presented.
The Compact
Fusion Reactor
The Compact Fusion Reactor is the name for the fusion power
plant idea put forth by Lockheed Martin. This plant is projected to make ~320 megawatts
of electricity. That would make it a
fusion reactor, on par with a combined cycle natural gas plant. It would make it smaller than todays’ nuclear
reactors and more powerful than current solar plants. Its fuel source could be cheap, and its’
radioactive waste could be very low. But
- based on the newest numbers - the CFR is not as compact as we had thought
[31]. The core looks to be over 50 feet
long and 20 feet in diameter. A hot
plasma will sit inside this ~16.3 cubic meter space. That is enough space to fit two yellow school
buses, with some extra room. Lockheed
estimates the plasma in center will be around ~5E+20 particles per cubic meter. That is ten times higher than the density
they currently get in the T4B. That
density is a hundred times less than the Joint European Torus – the current standard
for fusion research [55]. This plasma
will ideally, be held in a diamagnetic cusp trap. That means it can reach relative high
temperatures and pressures. Around the
edge of this plasma is a thick blanket which will absorb the products and
energy from the fusion reaction within.
That blanket is key. It is how
the energy gets made into electricity. But,
Lockheed has not offer any details about this blanket. They model the blanket as having ~4.2 megawatts/meter^2
of hot neutrons to hitting it, during operation. Below are some other key aspects of this machine [31]. Below that, is a computer model of its’
magnetic fields.
- Plasma trapping happens inside a magnetic well, with self-producing sharp field boundary.
- The trap is encloses 200 MW of thermal plasma. This assumes the plasma trap has a sheath or skin which is the size of the hybrid gyroradius.
- The CFR uses neutral beams, to heat the plasma to an ignited state.
- The losses that dominate, are the ion losses through the ring cusps, into stalks and axially through the sheath.
- If the CFR gets good global curvature in the magnetic fields, then the plasma will be have interchange stability, over the entire volume.
- Bad curvature does exist. But it is confined to the bridge region. In this region, the plasma has a significantly reduced density. It also streaming and non-maxwellian.
- A big advantage of the CFR is its small size. That lets you make quick changes.
- The major physics concern with this concept is the sheath size, the stability, the plasma inflation, the stalks shielding and finally the blanket material.
Model 1 – Using Grad-Shafranov
How
would we model the CFR? Engineering
Associates Incorporated was
hired to do an estimate of the plasma pressure inside the machine. Everything in their model was based on a cusp
confined plasma. That means they are
assuming the plasma pressure is balanced against the magnetic field. They are assuming that it is at
equilibrium. So the model would fail -
if cusp confinement does not work as promised.
This was only two dimensional model.
That is fine, everything is symmetric around an axis. Fortunately, there is a ready-made solution
for this problem: the Grad-Shafranov equation.
It is a perfect fit. It works for
2 dimensional plasmas, at equilibrium. Many
other math assumptions went into this; these are shown below. Engineering Associates used COMSOL - a physics program - to do the needed math.
Their software shows that a stable
plasma will “inflates” to the high pressure condition. The term “inflates” is new to me; it is an
interesting choice of words. Engineering
Associates produced a pressure profile of the plasma inside the CFR. They are saying that this thing can reach plasma
pressures that are 8 times higher than the Joint European Torus (JET) [50].
Model 2 – Particles in Cells
The next model uses a particle in cell code to understand
the machine. Lockheed did this
internally. They decided to look at the
smallest chunk of the machine possible.
A small chunk, which would still capture all the key physics. They choose a volume with two differently sized
magnetic rings. They then implemented a
particle in cell software. You break the
space up into little cells. You then use
representative particles to model how plasma moves through this space. PIC simulations have been around since the
1960’s, when they were developed at Los Alamos [51, 52]. They are more accurate than the math work by
Engineering Associates. But they still
have flaws. For example: this model was only
two dimensional. They simulated one
plane and then “spun” it around to make a cylinder of space. The details of this work, and the shape
examined is shown below.
Below is a summary of
what they found:
- After an initial load of plasma, the simulation quickly settles into a high pressure, equilibrium state.
- Diamagnetic currents form. This is a surface current along the plasmas’ skin. This makes a near field-free region inside the surface.
- Fast ions, which are shot in using neutral beam injection, are effectively trapped.
- The plasma density is highest in the center. Density falls as you travel along the axis. It falls as you move through the small ring, by a factor of five. The density also falls outside the big ring, by a factor of ten.
- The sheath width is pretty much constant. It is dominated by an electric field; which is made by the plasma’s inner diamagnetic currents.
- The size of the cusps along the axis and by the rings, are decoupled. These are the holes in the trap. This seems to mean that the size of one, does not affect the other.
- They hypothesize that the size of the cusp will change, when they get to a stronger magnetic field.
Flaws
in Model 2:
This
model definitely needs work. For one
thing, it just looks at the starting of the machine. Lockheed needs to understand what happens
when it reaches steady state. At steady
state, the plasma will be colliding with itself. They also need to understand the skin of the
trap, its’ sheath. This model shows that
the trap makes a self-generated current on its skin. This confirmation of an idea put forth by Dr.
Joel Rogers a few years ago [29 – 31]. They
need to know: what is a good energy distribution for material along this skin
of the trap? Finally, they need to
include the machines’ full geometry and it would be nice to match this model
with a real world experiment like the T4B. To do that, they must include the effects of
the conductive metal walls. They would
also need to scale up to running this software on supercomputers.
Results
of Model 2
Even though this model is very limited –
the results definitely look like a cusp confined plasma. You can examine these above. First, notice that in the density plot, the
boundary is sharp. If this is proved
out by data, this would be unusual trait for any kind of fusion experiment. If you look at the magnetic field plot, there
is almost no magnetic field inside this boundary. That is a field-free region – just like the one
predicted by a cusp confined plasma [25].
Next, the plasma has a skin current running over its’ surface. This offers support to statements made by
folks in the polywell community years ago [29 - 30]. Finally, look at the overall shape of the
trap. It is sharply bent shape with
holes in the current along the axis and the rings. This strikes of what we expected to see. Again – it is only a model though, not
confirmation.
Model 3 – Straight Up
Math:
So far, none of this has looked at the Compact Fusion Reactor in
deep detail. That is tough to do with
software. The Grad- Shafranov model is too simple to
cover this. The particle-in-cell model
is too limited. Management at the
Skunkworks needed more assurance that this would be interesting, before they
funded it. So the team tried to pick
apart the physics inside the machine and write an equation for everything they
thought would happen. Making the simple
model helps a researcher get
a feel for what is going on. When it was
finished, the math used in this model was very extensive. Below, I have tried my best to pull it apart
and explain the reasoning behind it.
Unfortunately, I do not have the variables and some details are not
included in the poster. The raw equations
are given at the end of this post. The
next four paragraphs walk you through Lockheeds’ assumptions and
reasoning. After examination, it is
clear to me that many assumptions went into this, and that leaves me very
skeptical.
Model
3 - Introduction:
This model is all about energy. Like an account at a bank: how much is coming
in, how much is made and how much is going out?
At full force, the CFR would in ignition mode. Ignition is a fusion chain reaction. Hot helium made by fusion, would kick off new
fusion reactions before exiting the machine.
So it is making energy – but that is offset by how much energy is
leaving and being added. There
are two ways that energy leaves the machine: through light or through mass loss
[64]. Light losses are easy to find. Lockheed uses several typical expressions to
account for this [31, 45, 60]. They
figure that 20.8 megawatts of energy is lost as light. The mass loss are harder to find. As the mass leaves, it pull energy away with
it. This is known as conduction
losses. There are two kinds of particles
in this machine: electrons and ions. Right
away Lockheed ignores the electron losses.
They make this assumption based on the idea that the plasma is mostly
ions. I am skeptical of this claim, but
it seems to be a big part of running the CFR power plant. They want to make the plasma as positive as
they can. They do this by manipulating
the ion temperature, the electron temperatures and the mirror ratio. The mirror ratio is the ratio of the self-generated
and external magnetic fields along the skin of the trap [25, 31, 61]. If they can tune things just right - they
assume the plasma will become mostly ions, because of ambipolar effects
[53]. Crudely speaking: amibipolar means
that the electrons and the ions are moving differently. I do not fully understand this mechanism. Apparently,
reference 53 explains this effect well.
For visual learners, I have made a flow chart of these concepts.
Model
3 – Ions Escaping
After
we have dealt with light and electron losses, the only thing left to explore
are ions leaving. Ions have four paths
out this machine. First, they can be
conducted out, through the stalks.
Lockheed figures it can both shield and lower the density around these
stalk by a factor of a 100. That curbs stalk
conduction. The other three ion losses
are through: the sheath, the axial cusp and the ring cusps. You can’t estimate any of these losses, without
something called: the ion distribution function. The distribution function is an equation that
tells you how many ions, have how much energy.
Lockheed uses some math to estimate this. If they build the CFR, they
can measure it directly. The first
losses are through the skin of the trap.
These are the sheath losses.
Here, they make two more assumptions: the density of the ions and the
ratio of the magnetic fields, along the sheath.
Next, there are the losses through the cusps along the axis. You can think of cusps as a hole in the trap.
The axial cusps sit along the axis of
the plasma (see picture below). You need
a few assumptions here: a sheath thickness around the cusp, a mirror ratio and the
plasma potential. Finally, there are the
loss through the ring cusp. To find ring
losses, you need to make all the same assumptions as above, plus two more: a
geometric transparency and magnetic shielding near the ring. Here - Lockheed chooses to be
optimistic. They assume a 5% reduction
in ring cusp losses, because of shielding [31].
Wow. There are a ton of
assumptions in this model. Notice there
are assumptions, based on other assumptions.
That is scientifically risky.
Model
3 - Particles Inside
Aside
from the losses, researchers also needed a way to understand the energy inside
the machine. Lockheed assumes that the
plasma has five parts to it. The most
common part is the regular ions.
Lockheed predicts that the average ion will be at 9,600 electronvolts [31].
That is 111 million degrees kelvin. It
is not impossible for fusion to occur at these temperatures – but most ion do
not fuse. It is all governed by probabilities,
known as the cross section. The rates
will rise as things get hotter [54]. So,
Lockheed is probably not relying on this ion population to give the machine its’
fusion kick. The second most common
component is the electrons. Surprisingly,
the electrons are modelled as hotter than the ions. At 12,600 electronvolts, the electrons are 35
million degrees hotter than the ions [31]. Wow. Remember
these electrons are far smaller and lighter, when compared to the ions. The analogy is, if the ions were small
marbles, the electrons would be the size of atmospheric dust [57 - 59]. Energy moves to and from these two populations.
Lockheed uses a classical Spritzer
expression to nail down these energy flows [31, 45, 60]. Mixed in with all of this, is a small
population of fast ions. The fast ions
are the particles most likely to fuse. They
are recently injected, and very hot. The
model says that the ions will heat just about everything else inside this
trap. Lockheed uses a common equation to
estimate this rate [54]. The math says
the ions will be trapped longer than their energy transfer time; so these ions
will heat things. This claim is
supported with data from an old mirror experiment in the eighties - but they do
not give us a citation. Finally, the
smallest population is the hot helium atoms and the neutrons. These come out of fusion reactions themselves. The neutrons leave immediately; they are
ignored. Getting the hot Helium to hang
around, is critical. Ideally, the Helium
would dump its’ energy into the plasma before leaving. This would start more fusion reactions; it
would start a fusion chain reaction. That is the concept of Ignition. An igniting plasma is something all fusion researchers
would love to have. Lockheed is assuming
the CFR will reach an ignited state and that is a big part of making the
concept work.
Model
3 – Dealing With Time
All of this math, moves forward in
time. Everything is calculated, then a
step in time is taken and then everything is recalculated. The model starts with the reactor empty. A beam of fast ions is injected. This is done with neutral beam injection, a
common method in fusion. The fast ions
get trapped and they start to fill up the space. At each step, the math tries to balance the
plasma and the magnetic field pressures.
It tries to solve for the volume at that time step. So, in time, the plasma blows up like a
balloon. It inflates, stabilizes,
finding the “beta=1” shape and then inflates some more. That is how the model works. The magnetic field is assumed to grow linearly
with radius. This means, as plasma
balloons outward the magnetic pressure rises linearly. Over time, the trap fills up. Once the trap is full, the model stops. This happens when the plasma pressure matches
a 2.3 tesla magnetic field pressure. The
model assume the field is constant around this plasma. With competing physical effects, that probably
won’t be true. Lastly, this model is not
addressing the steady state condition.
It is clear, this model definitely has some flaws.
Model
3 - Results:
The
goal of this work was to understand out how to design, operate and run the
CFR. For the CFR to work, you must nail
the plasma trapping physics. This critical
to making it work. The model tells us
that the physics are driven by the cusp sizes and the plasma density. It also says you have to make the cusps as
small as you can. The size you want to
hit is the “hybrid gyroradius” – but Lockheed gives no numbers on what this
size is. It must be close to the radius
of a spinning ion and spinning electron, near the cusps in question. The plasma density is key to controlling
electron to ion energy transfer; which makes it central to keeping the ions and
electrons at two different temperatures.
Moreover, Lockheed plans to hold this temperature difference,
throughout operations [31]. Frankly,
Rider has a theory arguing that this is impossible [45, 46]. Rider argues that temperature differences
overtime evaporate, because of constant energy transfer. I would say the argument is not settled. Lockheed links this temperature difference to
making the plasma positive through ambipolar effects. Those effects, in turn, help the ion trapping. Here, Lockheed provides some data for support
[53]. Put everything together, and this
model lays out a chain of effects that must all work together, for
this to work. It seems like a tall order. The density must drives a persistent
temperature difference, which in turn, drives ambipolar effects, which in turn,
makes the plasma positive, which in turn, helps ion trapping. Wow. Critics will surely argue you can’t do
this and the whole thing would fall apart.
Supporters would disagree. We
have heard similar arguments, in the past, over the polywell [65, 45, 46, 48, 49,
34]. We need data. Only data will settle these kinds of debates.
If everything works as planned, this model predicts that you can turn off the neutral beam injection after a certain amount of time. That would be great - if it works. It means, you can fill it, get it fusing and then let it run. Awesome. This depends on the machine igniting. If everything works as planned, the CFR should generate about 320 megawatts of net power.
“It does not matter how elegant your theory is, if it disagrees
with experiment … it's’ wrong.” – Richard Feynman
Conclusion:
So we are left
again with a lack of data. We need to
change that. Fusion power would change
the world. Its implications are
huge. It is the kind of research that
cannot be left to chance. Especially for
the United States. Our country depends
on a nuclear edge for military, economic and technical prowess. Right now, it is considered impossible by the
general public. But, many things have
been considered impossible in the past.
History rewards the nations that stay technically savvy and the US
cannot fall behind.
Citations:
1. Martin,
Richard. "Go Inside Tri Alpha, A Startup Pursuing the Ideal Power
Source." MIT Technology Review, 20 May 2016. Web. 22 Nov. 2016.
.
2. Sputnik. "Experts Lack Evidence to Assess Lockheed Nuclear Fusion Project." Sputnik International. Sputnik International, 06 Nov. 2014. Web. 22 Nov. 2016.
3. Belfiore, Michael. "Lockheed Martin's Plan to Make Fusion (Finally) a Reality." Popular Mechanics. N.P., 30 Jan. 2015. Web. 22 Nov. 2016.
4. McGuire, Thomas. Magnetic Field Plasma Confinement for Compact Fusion Power. US Patent Application, assignee. Patent 14/242,999. 2 Apr. 2014. Print.
5. McGuire, Thomas. Magnetic Field Plasma Confinement for Compact Fusion Power. World Intellectual Property Organization, assignee. Patent WO 2014/165641 A1. 9 Oct. 2014. Print.
6. S, Eric. "Compact Fusion Research & Development." YouTube. Lockheed Martin, 15 Oct. 2014. Web. 01 Nov. 2014.
7. McGuire, Thomas. Heating Plasma for Fusion Power Using Magnetic Field Oscillations. Baker Botts LLP, assignee. Issued: 4/2/14, Patent 14/243,447. N.D. Print.
8. McGuire, Thomas. "The Lockheed Martin Compact Fusion Reactor." Thursday Colloquium. Princeton University, Princeton. 6 Aug. 2015. Lecture.
9. Mehta, Aaron. "Lockheed Still Supporting Portable Nuclear Generator." Defense News. Defense News, 3 May 2016. Web. 22 May 2016.
10. The Migma principle of controlled fusion, Bogdan C. Maglich, Nuclear Instruments and Methods III (1973), p 213-235
11. Chang, Kenneth (February 27, 2007). "Practical Fusion, or Just a Bubble?” New York Times. Retrieved 2007-02-27.
12. Moynihan, Matthew. The Polywell Blog "Lockheed Blew It." N.P., 17 Oct. 2014. Web. 22 Nov. 2016. http://www.thepolywellblog.com/2014/10/lockheed-blew-it.html
13. Ma, Michelle. "Fusion Researchers Take a Different Approach to a Heated Conversation." UW Today. University of Washington, 24 Oct. 2014. Web. 22 Nov. 2016.
15. Park, J. "High-Energy Electron Confinement in a Magnetic Cusp Configuration." Physical Review X. N.P., 11 June 2015. 06 Nov. 2015.
16. Boyle, Alan. "How Lockheed Martin's Power Play Could Boost Fervor Over Fusion." NBC News. NBC News, 16 Oct. 2014. Web. 22 Nov. 2016.
17. Follet, Andrew. "MIT’s Fusion Reactor Breaks World Record, then Promptly Gets shut down." The Daily Caller. N.p., 16 Oct. 2016. Web. 22 Nov. 2016.
18. Search for the Ultimate Energy Source: A History of the U.S. Fusion Energy” Page 185.
19. Hsu, Scott. "Energy Subcommittee Hearing - An Overview of Fusion Energy Science." Committee on Science, Space, and Technology. Congress, 03 May 2016. Web. 22 Nov. 2016.
20. Moynihan, Matt. "ITER Will Never Lead To Commercial Viability." The Polywell Blog. N.p., 19 Oct. 2015. Web. 22 Nov. 2016. http://www.thepolywellblog.com/2015/10/iter-will-not-work-commercially.html
21. Binderbauer, M. W. "A High Performance Field-reversed Configuration." A High Performance Field-reversed Configuration. AIP Physics of Plasma, 15 May 2015. Web. 23 May 2016.
22. Dumaine, Brian. "Why Jeff Bezos, Peter Thiel, and Others Are Betting on Fusion." Fortune. N.p., 27 Sept. 2015. Web. 22 Nov. 2016.
23. Cole, K. D. "Diamagnetism in a Plasma." Physics of Plasmas 4.6 (1997): 2072. Web. 3 Dec. 2016.
24. Nave, R. "Magnetic Forces on Moving Charges." Magnetic Force on a Moving Charge. Georgia State University, n.d. Web. 03 Dec. 2016.
25. Dolan, Thomas J. “Review Article: Magnetic Electrostatic Plasma Confinement.” Vol. 1539-1593. N.p.: Plasma Physics and Controlled Fusion, 1994. Print.
26. "Beta (plasma Physics)." Wikipedia. Wikimedia Foundation, 28 Nov. 2016. Web. 03 Dec. 2016.
27. Monreal, Benjamin. "Single-electron Cyclotron Radiation." Physics Today 69.1 (2016): 70-71. Web. 3 Dec. 2016.
28. Elder, F. R.; Gurewitsch, A. M.; Langmuir, R. V.; Pollock, H. C., "Radiation from Electrons in a Synchrotron" (1947) Physical Review, vol. 71, Issue 11, pp. 829-830.
29. Private conversation with Dr. Joel Rogers. 30 Sept. 2014.
30. Rogers, Joel G. "A “Polywell P+11B Power Reactor." The School of Physics. The University of Sydney. Web. December 2011.
31. McGuire, Thomas, Font Gabriel, Artan Qerushi, and Lockheed Martin Team. Lockheed Poster: “Martin Compact Fusion Reactor Concept, Confinement Model and T4B Experiment”. American Physical Society, Division of Plasma Physics 2016 Conference. Lockheed Martin, 29 Oct. 2016. Web. 3 Dec. 2016.
32. Gummersall, David V., Matthew Carr, Scott Cornish, and Joe Kachan. "Scaling Law of Electron Confinement in a Zero Beta Polywell Device." Physics of Plasmas 20.10 (2013): 102701. Web.
33. "Talk-Polywell.org."
Help with the Math behind the 14 Point Star - Talk-Polywell.org. N.p., n.d.
Web. 03 Dec. 2016.
34. "An Interview With Thomas Ligon on The Polywell." Interview by Thomas Ligon. YouTube. YouTube, 25 May 2009. Web. 31 Aug. 2010.
35. Park, Jaeyoung, Nicholas A. Krall, and Paul E. Sieck. "High Energy Electron Confinement in a Magnetic Cusp Configuration." Physical Reviews X (2014): 1-12. 13 June 2014.
36. Private
conversation with Daniel Prater on APS Conference. 1 November. 2016.
37. Mehta,
Aaron. "Lockheed Still Supporting Portable Nuclear Generator."
Defense News. Defense News, 3 May 2016. Web. 22 May 2016.
38. Morozov, A. I., and V. V. Savel'ev. "On Galateas” Magnetic Traps with Plasma-embedded Conductors." Physics-Uspekhi Russian Academy of Sciences 41.11 (1998): 1049-089. Web. 4 Dec. 2016.
39. Park,
Jaeyoung. "Polywell Fusion: Electrostatic Fusion in a Magnetic Cusp."
Microsoft Research. Microsoft Inc, 22 Jan. 2015. Web. 20 July 2015.
40. Park, Jaeyoung (12 June 2014). SPECIAL PLASMA SEMINAR: Measurement of Enhanced Cusp Confinement at High Beta (Speech). Plasma Physics Seminar. Department of Physics & Astronomy, University of California, Irvine: Energy Matter Conversion Corp (EMC2) url=http://www.physics.uci.edu/seminar/special-plasma-seminar-measurement-enhanced-cusp-confinement-high-beta
41. "Polywell
Fusion – Electric Fusion in a Magnetic Cusp" Jaeyoung Park, Friday,
December 5, 2014 - 1:00pm to 2:00pm, Physics and Astronomy Building (PAB) Room
4-330, UCLA.
42. Talk at
University of Wisconsin Madison, Monday, June 16, 2:30 PM room 106 ERB,
Jaeyoung Park
43. University
of Maryland, Colloquium & Seminars, "Measurement of Enhanced Confinement
at High Pressure Magnetic Cusp System", Jaeyoung Park, September 9th 2014.
44. "Polywell
Fusion Electrostatic Fusion in a Magnetic Cusp", Jaeyoung Park,
http://fire.pppl.gov/FPA14_IECM_EMC2_Park.pdf, Tuesday December 16, 2014 Hyatt
Regency Capitol Hill 400 New Jersey Avenue NW, Washington, DC 20001.
45. Rider,
Todd H. "A General Critique of Inertial-electrostatic Confinement Fusion
Systems." Physics of Plasmas 6.2 (1995): 1853-872. Print.
46. “Fundamental
limitations on Plasma Fusion Systems not in thermodynamic equilibrium” Todd
Rider, Thesis, MIT, June 1995.
47. Bussard,
Robert W. "The Advent of Clean Nuclear Fusion: Super performance Space
Power and Propulsion." 57th International Astronautical Congress (2006).
48. Carr,
Matthew, and Joe Khachan. "A Biased Probe Analysis of Potential Well
Formation in an Electron Only, Low Beta Polywell Magnetic Field." Physics
of Plasmas 20.5 (2013): 052504. Web. 4 Dec. 2016.
49. Duncan,
Mark, and Robert Bussard. Should Google Go Nuclear? (Summary). N.d. MS. Should
Google Go Nuclear? Www.askmar.com. Mark Duncan, 24 Dec. 2008. Web. 4 Feb. 2013.
50. "Is
the Plasma Chamber Evacuated? To What Pressure? Do the Tiny Amounts of
Deuterium and Tritium Alter the Pressure?" EUROfusion Questions and
Answers. EUROfusion, n.d. Web. 04 Dec. 2016.
51. Spalding,
Brian. "New Science: The Development of Computational Fluid Dynamics at
Los Alamos National Laboratory." YouTube. YouTube, 11 May 2010. Web. 15
Nov. 2012. .
52. Fromm, Jacob. "Numerical Solution of the Problem of Vortex Street Development." Physics of Fluids 6.975 (1963): 975-82. Print.
53. Ben Daniel, D. J. "Plasma Potential in a Magnetic Mirror System." Journal of Nuclear Energy. Part C, Plasma Physics, Accelerators, Thermonuclear Research 3.4 (1961): 235-41. Web. 4 Dec. 2016.
54. Huba, J.D. "2016 NRL PLASMA FORMULARY." Plasma Physics Division. Naval Research Laboratory, 2016. Print.
55. Energy, Fusion For. "Technology." Fusion for Energy. EUROFUSION, n.d. Web. 04 Dec. 2016.
56. "Development of the Indirect‐drive Approach to Inertial Confinement Fusion and the Target Physics Basis for Ignition and Gain." John Lindl. Page: 3937. AIP Physics of Plasma. American Institute of Physics, 14 June 1995.
57. "Proton." Wikipedia, the Free Encyclopedia. The Wikipedia Foundation, 28 Jan. 2012. Web. 02 Feb. 2012.
58. "Electron." Wikipedia, the Free Encyclopedia. The Wikipedia Foundation, 1 Feb. 2012. Web. 02 Feb. 2012.
59. "Classical Electron Radius." Wikipedia, the Free Encyclopedia. The Wikipedia Foundation, 29 Oct. 2011. Web. 02 Feb. 2012.
60. Spitzer, Lyman. Physics of Fully Ionized Gases. New York: Interscience, 1962. Print.
61. "Mirror Systems: Fuel Cycles, loss reduction and energy recovery" by Richard F. Post, BNES Nuclear fusion reactor conferences at Culham laboratory, September 1969.
62. Private conversation with Dr. Tom McGuire and Charles Chase. 15 Dec. 2013.
63. Goebel, D. M., J. T. Crow, and A. T. Forrester. "Lanthanum Hexaboride Hollow Cathode for Dense Plasma Production." Review of Scientific Instruments 49.4 (1978): 469. Web. 10 Dec. 2016.
64. "Some Criteria for a Power producing thermonuclear reactor" John Lawson, Atomic Energy Research Establishment, Hanvell, Berks, 2nd November 1956
65. Nevins, W. M. (1995). "Can inertial electrostatic confinement work beyond the ion–ion collisional time scale?" (PDF). Physics of Plasmas. 2 (10): 3804.
Chart Citations:
A. "The
dynomak: An advanced spheromak reactor concept with imposed-dynamo current
drive and next-generation nuclear power technologies" Fusion Engineering
and Design, Sutherland, Jarboe, Morgan, Pfaff, Lavine, Kamikawa, Hughes,
Andrist, Marklin
B. Jarboe, T.r., B.s. Victor,B.a. Nelson, C.j. Hansen, C. Akcay, D.a. Ennis, N.k. Hicks, A.c. Hossack, G.j.Marklin, and R.j. Smith. "Imposed-dynamo Current Drive." Nucl. Fusion Nuclear Fusion 52.8 (2012): 083017.
C. McGuire, Thomas. "The Lockheed Martin Compact Fusion Reactor." Thursday Colloquium. Princeton University, Princeton. 6 Aug. 2015. Lecture.
D. Park, J. "High-Energy Electron Confinement in a Magnetic Cusp Configuration." Physical Review X.N.p., 11 June 2015. 06 Nov. 2015.
E. Wobig, H., T. Andreeva, and C.D. Beidler. "Recent Development in Helias Reactor Studies." 19thIAEA- Fusion Energy Conference. IAEA FT/1-6, n.d. 04 Apr. 2016.
F. Wesson, John; et al. (2004).Tokamaks. Oxford University Press. ISBN 0-19-850922-7.
G. Spitzer, Lyman. "The Stellarator Concept." Physics of Fluids (1958): n. pag. 4 Apr. 2016.
H. Perea, A., R. Martin, J.l.Alvarez Rivas, J. Botija, J.r. Cepero, J.a. Fabregas, J. Guasp, A. LopezFraguas, A. Perez-Navarro, E. Rodriguez Solano, B.a. Carreras, K.k. Chipley,T.c. Hender, T.c. Jernigan, J.f. Lyon, and B.e. Nelson. "Description of the Heliac Tj-Ii And Its research System." Fusion Technology 1986 (1986):673-78.
I. Miller, R.l., and R.a. Krakowski. "Modular Stellarator Fusion Reactor Concept." Los AlamosLA-8978MS (1981): 1-161. 4 Apr. 2016.
J. Proc. of 20th International Stellarator-Heliotron Workshop (ISHW), Max Planck Institute, Greifswald, Germany. Greifswald, 2015.
K. Grieger, G., J. Nührenberg,H. Renner, J. Sapper, and H. Wobig. "HELIAS Stellarator Reactor Studiesand Related European Technology Studies." Fusion Engineering and Design25.1-3 (1994): 73-84. 4 Apr. 2016.
L. Haines, M. G. "A Review of the Dense Z -pinch." Plasma Phys. Control. Fusion Plasma Physics and Controlled Fusion 53.9 (2011): 093001.
M. Jarboe, T. R. "Review of Spheromak Research." Plasma Phys. Control. Fusion Plasma Physics and Controlled Fusion 36.6 (1994): 945-90.
N. Slutz, Stephen A., and Roger A. Vesey. "High-Gain Magnetized Inertial Fusion." Phys. Rev. Lett. Physical Review Letters 108.2 (2012): n. page 4 Apr. 2016.
O. "Mirror Systems: Fuel Cycles, loss reduction and energy recovery" by Richard F. Post, BNES Nuclear fusion reactor conferences at Culham laboratory, September 1969.
P. "Overview of LDX Results" Jay Kesner, A. Boxer, J. Ellsworth, I. Karim, Presented at the APS Meeting, Philadelphia, November 2, 2006, Paper VP1.00020
Q. Krishnan, Mahadevan."The Dense Plasma Focus: A Versatile Dense Pinch for Diverse Applications." IEEE Trans. Plasma Sci. IEEE Transactions on Plasma Science40.12 (2012): 3189-221. Web.
R. Hedditch, John."arXiv. org e-Print archive Physics ArXiv:1510.01788." Fusion in a Magnetically-shielded-grid Inertial Electrostatic Confinement Device. ArXiv, 7Oct. 2015. Web. 22 Dec. 2015.
S. Robert L. Hirsch," Inertial-Electrostatic Confinement of Ionized Fusion Gases", Journal of Applied Physics, v. 38, no. 7, October 1967
T. Park, J., and R. A. Nebel."Periodically Oscillating Plasma Sphere." Physics of Plasmas 12.5(2005): n. pag. AIP. Web. 22 May 2016.
U. Tuszewski, M. "Field Reversed Configurations." Nuclear Fusion Nuclear Fusion 28.11 (1988):2033-092. Web. 22 May 2016.
V. Hsu, S. C., A. L. Moser, E.C. Merritt, C. S. Adams, J. P. Dunn, S. Brockington, A. Case, M. Gilmore, A. G. Lynn, S. J. Messer, and F. D. Witherspoon. "Laboratory Plasma Physics Experiments Using Merging Supersonic Plasma Jets." J. Plasma Phys. Journal of Plasma Physics 81.02 (2014): n. pag. Web. 22 May 2016.
W. A, Levine
M., Brown I. G, and Kunkel. "Scaling for Tormac Fusion Reactors."
Scaling for Tormac Fusion Reactors. IAEA NIS, n.d. Web. April 1976. .
X. Berkowitz, J., K.o. Friedrichs, H. Goertzel, H. Grad, J. Killeen, and E. Rubin. "Cusped Geometries." Journal of Nuclear Energy (1954) 7.3-4 (1958): 292-93. Web.16 June 2014.
Y. Barnes, D. C., M. M. Schauer, K. R. Umstadter, L. Chacon, and G. Miley. "Electron Equilibrium and Confinement in a Modified Penning Trap and Its Application to Penning Fusion." Physics of Plasmas Phys. Plasmas 7.5 (2000): 1693. Web. 22 May2016.
Z. Kodama, R., P. A. Norreys, K.Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T.Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori,
A.Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf."Fast Heating of Ultrahigh-density Plasma as a Step towards Laser Fusion Ignition." Nature 412.6849 (2001): 798-802. Web.
AA. Nuckolls, John; Wood, Lowell; Thiessen, Albert; Zimmerman, George (1972), "Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications" (PDF),Nature 239 (5368): 139–142, Bibcode:1972Natur.239..139N, doi:10.1038/239139a0,retrieved August 23, 2014
BB. Laberge, Michel. "An Acoustically Driven Magnetized Target Fusion Reactor." Journal of Fusion Energy J Fusion Energy 27.1-2 (2007): 65-68. 22 May 2016.
CC. Meyer-Ter-Vehn, J." Inertial Confinement Fusion Driven by Heavy Ion Beams." Plasma Phys. Control. Fusion Plasma Physics and Controlled Fusion 31.10 (1989): 1613-628.Web. 22 May 2016.
Appendix:
The Math Used To Model The CFR:
This comment has been removed by a blog administrator.
ReplyDeleteRegarding the intro, Lockheed Martin is a defense contractor, not a university. Their employees usually hold security clearances issued by the military. Contractors like LM function almost as another branch of the military. In the defense (AKA WAR) industry, we do not declassify, let alone publish anything of real significance. Ever. The author's demands of publications are asinine considering the situation. I'd like to see exactly what they're up to too, but I'm not about to hold it against them for not telling me.
ReplyDeleteThis comment has been removed by a blog administrator.
ReplyDelete